2,073 research outputs found

    A new null diagnostic customized for reconstructing the properties of dark energy from BAO data

    Full text link
    Baryon Acoustic Oscillations (BAO) provide an important standard ruler which can be used to probe the recent expansion history of our universe. We show how a simple extension of the Om diagnostic, which we call Om3, can combine standard ruler information from BAO with standard candle information from type Ia supernovae (SNIa) to yield a powerful novel null diagnostic of the cosmological constant hypothesis. A unique feature of Om3 is that it requires minimal cosmological assumptions since its determination does not rely upon prior knowledge of either the current value of the matter density and the Hubble constant, or the distance to the last scattering surface. Observational uncertainties in these quantities therefore do not affect the reconstruction of Om3. We reconstruct Om3 using the Union 2.1 SNIa data set and BAO data from SDSS, WiggleZ and 6dFGS. Our results are consistent with dark energy being the cosmological constant. We show how Om and Om3 can be used to obtain accurate model independent constraints on the properties of dark energy from future data sets such as BigBOSS.Comment: 9 pages, 4 figures, discussions extended, results unchanged, matches the final version published in PR

    Asymmetric embedding in brane cosmology

    Full text link
    We derive a system of cosmological equations for a braneworld with induced curvature which is a junction between several bulk spaces. The permutation symmetry of the bulk spaces is not imposed, and the values of the fundamental constants, and even the signatures of the extra dimension, may be different on different sides of the brane. We then consider the usual partial case of two asymmetric bulk spaces and derive an exact closed system of scalar equations on the brane. We apply this result to the cosmological evolution on such a brane and describe its various partial cases.Comment: 10 page

    Evolution of perturbations in distinct classes of canonical scalar field models of dark energy

    Full text link
    Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modelled by either a scalar field or by a barotropic fluid.The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models.The dark energy equation of state evolves differently in these classes.In freezing models, the equation of state deviates from that of a cosmological constant at early times.For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times.Since the dark energy equation of state evolves differently in these classes,the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model.In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the ISW effect.Comment: 11 pages, 6 figures, accepted for publication in Phys. Rev.

    Thermodynamical properties of dark energy

    Get PDF
    We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature TanT\sim a^{-n} and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>1w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously.Comment: 5 two column pages, 2 figures; v2: discussion on thermal equilibrium with the horizon is added, v3: minor corrections, published in PR

    Observational constraints on interacting quintessence models

    Full text link
    We determine the range of parameter space of Interacting Quintessence Models that best fits the recent WMAP measurements of Cosmic Microwave Background temperature anisotropies. We only consider cosmological models with zero spatial curvature. We show that if the quintessence scalar field decays into cold dark matter at a rate that brings the ratio of matter to dark energy constant at late times,the cosmological parameters required to fit the CMB data are: \Omega_x = 0.43 \pm 0.12, baryon fraction \Omega_b = 0.08 \pm 0.01, slope of the matter power spectrum at large scals n_s = 0.98 \pm 0.02 and Hubble constant H_0 = 56 \pm 4 km/s/Mpc. The data prefers a dark energy component with a dimensionless decay parameter c^2 =0.005 and non-interacting models are consistent with the data only at the 99% confidence level. Using the Bayesian Information Criteria we show that this exra parameter fits the data better than models with no interaction. The quintessence equation of state parameter is less constrained; i.e., the data set an upper limit w_x \leq -0.86 at the same level of significance. When the WMAP anisotropy data are combined with supernovae data, the density parameter of dark energy increases to \Omega_x \simeq 0.68 while c^2 augments to 6.3 \times 10^{-3}. Models with quintessence decaying into dark matter provide a clean explanation for the coincidence problem and are a viable cosmological model, compatible with observations of the CMB, with testable predictions. Accurate measurements of baryon fraction and/or of matter density independent of the CMB data, would support/disprove these models.Comment: 16 pages, Revtex4, 5 eps figures, to appear in Physical Review

    Phantom Accretion by Five Dimensional Charged Black Hole

    Full text link
    This paper deals with the dynamical behavior of phantom field near five dimensional charged black hole. We formulate equations of motion for steady-state spherically symmetric flow of phantom fluids. It is found that phantom energy accretes onto black holes for u<0u<0. Further, the location of critical point of accretion are evaluated that leads to mass to charge ratio for 5D charged black hole. This ratio implies that accretion cannot transform a black hole into a naked singularity. We would like to mention here that this work is an irreducible extension of 4D charged black hole.Comment: 8 pages, accepted for publication in Mod. Phys. Lett.

    String inspired explanation for the super-acceleration of our universe

    Full text link
    We investigate the effect of the bulk content in the general Gauss-Bonnet braneworld on the evolution of the universe. We find that the Gauss-Bonnet term and the combination of the dark radiation and the matter content of the bulk play a crucial role in the universe evolution. We show that our model can describe the super-acceleration of our universe with the equation of state of the effective dark energy in agreement with observations.Comment: 12 pages, 9 figures, references adde

    APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND

    Get PDF
    A proposal is made to test Newton's inverse-square law using the perihelion shift of test masses (planets) in free fall within a spacecraft located at the Earth-Sun L2 point. Such an Artificial Planetary System In Space (APSIS) will operate in a drag-free environment with controlled experimental conditions and minimal interference from terrestrial sources of contamination. We demonstrate that such a space experiment can probe the presence of a "hidden" fifth dimension on the scale of a micron, if the perihelion shift of a "planet" can be measured to sub-arc-second accuracy. Some suggestions for spacecraft design are made.Comment: 17 pages, revtex, references added. To appear in Special issue of IJMP

    Quantum mechanical study of molecules - Eigenvalues and eigenvectors of real symmetric matrices

    Get PDF
    Computer methods for calculating eigenvalue and eigenvectors of real symmetric matrices arising in problems of molecular quantum mechanic

    Cosmological scalar fields that mimic the ΛCDM\Lambda CDM cosmological model

    Full text link
    We look for cosmologies with a scalar field (dark energy without cosmological constant), which mimic the standard ΛCDM\Lambda CDM cosmological model yielding exactly the same large-scale geometry described by the evolution of the Hubble parameter (i.e. photometric distance and angular diameter distance as functions on zz). Asymptotic behavior of the field solutions is studied in the case of spatially flat Universe with pressureless matter and separable scalar field Lagrangians (power-law kinetic term + power-law potential). Exact analytic solutions are found in some special cases. A number of models have the field solutions with infinite behavior in the past or even singular behavior at finite redshifts. We point out that introduction of the cosmological scalar field involves some degeneracy leading to lower precision in determination of Ωm\Omega_m. To remove this degeneracy additional information is needed beyond the data on large-scale geometry.Comment: VIII International Conference "Relativistic Astrophysics, Gravitation and Cosmology": May 21-23, 2008, Kyiv, Ukrain
    corecore